
Cooperative Containment of Fast Scanning Worms

Jayanthkumar Kannan, Lakshminarayanan Subramanian,
Ion Stoica, Scott Shenker, Randy Katz

Report No. UCB/CSD-04-1359

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Cooperative Containment of Fast Scanning Worms
Jayanthkumar Kannan, Lakshminarayanan Subramanian,

Ion Stoica, Scott Shenker, Randy Katz

Abstract

Scanning worms, that spread by probing the IP address space
to find vulnerable hosts, are among the most serious threats to
Internet security today, as evident by the time-scales of some
recent large-scale worm attacks. Only an automatic defense
can hope to contain a carefully designed worm that uses an
unknown or a recently-divulged vulnerability. In this paper,
we propose acooperation-based worm containmentapproach
that enables potentially distrusting firewalls in different ac-
cess networks to exchange information in order tocontain
the spread of a fast scanning worm. Based on modeling the
propagation of scanning worms, we identify and analytically
quantify the effectiveness of two forms of cooperation be-
tween firewalls, namely,implicit signaling and explicit sig-
naling. Specifically, we highlight the regimes under which
implicit and explicit signaling provide effective containment.
In this paper, we also address some of thedeploymentchal-
lenges associated with cooperation-based worm containment.
Specifically, in a partial deployment scenario where only a
small fraction of access networks (1%) are protected behind
firewalls, we demonstrate arerouting mechanism that can
provide effective containment (97%) for these protected net-
works. One limitation of our work is that our analysis does not
apply to worms based on pre-generated target lists, stealthy
worms that slowly infect their vulnerable population, and
rapidly mutating polymorphic worms.

1 Introduction

Scanning worms that probe addresses in order to find vulner-
able hosts is the most common class of worms today. Sev-
eral recent worms, such as Slammer [1], Witty [2], CodeRed
[3, 4], Blaster [5], Nimda [6], fall in this category. Carefully
designed and programmed scanning worms [7] that can infect
most of the vulnerable population in a matter of minutes have
been predicted in theory and observed in practice. Slammer,
one of the fastest scanning worms seen so far, took only10
minutes to infect90% of the Internet’s vulnerable population
[1]. Moreover, the possibility of zero-day worm attacks based
on an unknown vulnerability has also been suggested [8]. On
the other hand, many existing worm defenses like patching,
address blacklisting hold out little hope in containing fast-
spreading worms [9].

In this work, we explore cooperation as a paradigm for con-
taining fast-scanning worms. By cooperation, we refer to the
exchange of information among firewalls in different access
networks to collectively detect and contain worms. Coopera-
tion can potentially have much better containment than stand-
alone mechanisms since firewalls of infected networks can
signal the spread of the worm to other firewalls in uninfected
networks who can then install worm-filters to escape infec-

tion.

Cooperation however comes with its own challenges: in-
cremental deployability, scalability, and security. Any solu-
tion for cooperation should supportincremental deployment
and should provide effective containment even when all fire-
walls in the Internet do not participate. While cooperation can
potentially perform better if more firewalls participate, one
challenge is to ensure that the information exchange canscale
with the number of firewalls. Our scheme should also be able
to accommodate firewalls that willfully or accidentally prop-
agate incorrect information. A cooperative scheme should be
resilient to false alarmstriggered by such erroneous informa-
tion.

The notion of cooperation has been suggested earlier in
literature. There have been several proposed detection and
containment architectures that involve participation among
multiple firewalls (e.g.,Hard Perimeters [10], Domino [11],
Wormholes [12], Weaver et al [13]). However, some of them
assume a complete deployment scenario, and most of them
assume that the participants trust one another. Cooperation
between mutually untrusted participants has only recently
been explored (in [14], [15]): the efficacy of these mech-
anisms is not fully understood and moreover, their perfor-
mance degrades with the scanning rate of the worm. Our work
generalizes on such existing work and aims to place the co-
operation paradigm on a sound theoretical footing. Such an
analysis helps to identify the effectiveness and limitations of
this approach. Our solution is also fully decentralized and this
precludes targeted attacks against a few participants in the
system from affecting the performance of the entire system.

In our cooperative containment scheme, a firewall can alert
other firewalls of an ongoing infection by using two forms of
information propagation:implicit andexplicit signaling. Im-
plicit signaling marks suspect malicious packets in order to
send alerts to other firewalls, while explicit signaling involves
an exchange of alerts between firewalls. These mechanisms
enable firewalls that havedetectedinfection to propagate sig-
nals to other firewalls which can thenfilter their incoming
traffic based on these signals. In order to improve the con-
tainment when only some Internet firewalls follow our pro-
tocol, we propose a technique calledrerouting where traf-
fic from undeployed firewalls is also monitored. We finally
discuss attacks by malicious firewalls and smart scanning
worms against our scheme and extend the rerouting mech-
anism to deal with malicious participants. Though we have
only considered scanning worms, using suitable local detec-
tion schemes, our results on propagation may alsogeneralize
to other classes of worms [8]. Our cooperative schemes do not
sacrificeprivacysince they only divulge the source and des-
tination addresses of traffic seen by the firewall: in particular,

1

packet contents are not revealed.

The primary metric we use to evaluate the effectiveness of
our scheme is thecontainment metricwhich represents the
fraction of vulnerable networks that escaped infection. We
used analytical techniques and numerical analysis to derive
the following results:

• Complete Deployment: We derive analytical bounds
on the containment offered by our schemes under com-
plete deployment. We show that if vulnerable hosts are
sparsely distributed in the address space, then local de-
tection and filtering (without any propagation) is suffi-
cient to contain a scanning worm. For the fastest scan-
ning worms known today, implicit signaling can achieve
97% containment and explicit signaling achieves99.8%
containment.

• Partial deployment: Our results indicate that even if
only 1% of networks are behind deployed firewalls, our
scheme can protect over92% of such networks against
the fastest scanning worms known today (and over97%
with rerouting, which however does not work if the
worm can spoof source addresses).

• Scalability: Implicit signaling requires minimal com-
munication overhead, but its containment degrades log-
arithmically with the number of participating firewalls
N . Explicit signaling, on the other hand, can achieve a
constant containment factor independent ofN at the ex-
pense oflog(N) communication overhead per firewall.

• Security: Our scheme is robust to false alarms triggered
by a few hundred malicious or unreliable firewalls in an
Internet-scale cooperative. However, our scheme cannot
handle the case in which a substantial fraction of fire-
walls might be malicious (e.g.,the worm subverts fire-
walls).

• Tradeoffs between implicit and explicit signaling:Im-
plicit signaling has low traffic overhead and its perfor-
mance is independent of the scanning rate of the worm,
while explicit signaling is more resilient to malicious
firewalls and smart scanning worms at the expense of
more overhead.

Limitations: Our work only deals with fast spreading scan-
ning worms that require automatic response. Stealthy worms
that propagate slowly can fly under the radar of our mecha-
nisms: such worms require other means of detection and con-
trol and are beyond the scope of this work. We do not address
other forms of worms such as hit-list based worms [8]. In our
work, we have assumed that, given suitable samples of worm
traffic, a firewall can identify malicious packets. This iden-
tification can be based on a simple byte signature or other
methods such as Autograph [16].

We have obtained results using a combination of analysis
and simulation based on a simple model of the Internet. While
we have tried to model the primary factors characterizing a
worm attack, a full-scale implementation would be required
to fully validate our results. Our scheme uses random sam-
pling techniques to defend against malicious firewalls and can
handle up to a few hundred such firewalls in an Internet-scale

cooperative. Auditing mechanisms can be used to discourage
large scale malicious behavior.

Outline: The rest of the paper is structured as follows. We
provide a precise problem definition in Section 2. We then
describe our solution under simplifying assumptions in Sec-
tion 3, and analyze its effectiveness in Section 4. We consider
the incremental deployment requirement in Section 5, and ad-
dress security issues in Section 6. We discuss related work in
Section 7 and present our conclusions in Section 8.

2 Problem Definition

The problem that we address in this work is stated as fol-
lows.ConsiderN mutually distrusting firewalls on the Inter-
net, each of which monitors an access network and desires
to defend its network against a scanning worm. How should
these firewalls cooperate with one another so as to minimize
the containment metric?In this section, we qualify this prob-
lem description further by specifying our simplified model of
the Internet and the class of worms we wish to defend against.
We then discuss the primary evaluation metric and the desir-
able features of a cooperation-based scheme.

Network Model: In our network model, we consider the
Internet to consist ofN access networks that are connected
to the Internet core through an access link to their ISPs. We
further assume that these access links are monitored by fire-
walls and that a host does not belong to more than one ac-
cess network. Thus, any traffic exchanged between hosts in
two different access networks can be monitored by the fire-
walls of these networks. This implies there are no covert links
between hosts in different networks. Of course, traffic ex-
changed between hosts in the same access network will not
be seen by their firewall. This implies that if asinglehost in
a network is infected, its firewall cannot prevent other hosts
within the same network from being infected. We expect that
there would be a few hundred thousand firewalls in our coop-
erative (based on the number of observed BGP prefixes [17]).

Worm Model: The class of worms that we focus on are
fast scanning worms that find vulnerable hosts by scanning
the IP address space. We assume that the scanning pattern of
a worm is as follows: an infected host first infects all hosts
in its network in zero time and then begins probing exter-
nal IP addresses uniformly at random to find more vulner-
able hosts. This corresponds to a local topological scan fol-
lowed by a global uniform random scan. Later, we will extend
this model in order to analyze non-uniform random scanning
worms. We do not consider worms that find vulnerable hosts
by means such as consulting search engines, global host di-
rectories, pre-generated hit lists [7].

Goals: Our primary metric of success against a worm at-
tack is the fraction of vulnerable networks that escape infec-
tion. We refer to this as thecontainmentmetric. We count un-
infected networks instead of hosts, since eventually, either all
vulnerable hosts belonging to the same network are infected
or none of them are infected. We now discuss the desirable
features of a cooperative containment scheme: deployability,
secure cooperation, and scalability. First, due to the scale of

2

Filtering

Local

Detection

Outgoing Traffic

Incoming Traffic

Internet
Implicit
Signals

Signals
Explicit

Signals
Explicit

Internal Hosts

Figure 1:Firewall Activities

the Internet, even if only some of the firewalls choose to im-
plement our scheme, they should be able to reap the bene-
fits of the scheme. We refer to this as thepartial deployment
scenario. Second, the effectiveness of a cooperative scheme
would improve as more and more firewalls in the Internet fol-
lowed our scheme. However, this means that the participants
cannot trust one another: some firewalls could be malicious,
or could be simply unreliable. Thus, our scheme should bero-
bustto both false negatives (missing a worm attack) and false
positives (raising a false alarm). In particular,false positives
is one of the pitfalls of automatic response systems, and our
scheme should be robust to malicious behavior attempting to
trigger such false positives. Finally, the overhead of coopera-
tion shouldscalewith the number of participating firewalls.

3 Idealized Model

In this section, we propose a solution for worm containment
that works in an idealized setting, where we make the follow-
ing two assumptions (which will be removed later):

1. Complete Deployment: Every firewall in the Internet
participates in our cooperative.

2. Trustworthy firewalls: All firewalls are trustworthy.

These assumptions considerably simplify the solution since
one does not have to deal with adversaries who try to attack
our cooperative by triggering false alarms. We first describe
the high-level components of our solution, and then describe
each component in detail.

3.1 Solution Framework

Firewalls participating in our cooperative perform the follow-
ing three functions (illustrated in Figure 1).

Local Detection: The goal of local detection is for a fire-
wall to determine whether its own network is infected. A fire-
wall monitors its outgoing traffic to perform local detection.
There are several advantages to analyzing outgoing traffic as
opposed to analyzing incoming traffic. A firewall can main-
tain characteristics of its outgoing traffic using per-host state,
unlike incoming traffic which can be very noisy due to rou-
tine Internet crud. Moreover, a decision made using incom-
ing traffic can potentially be influenced by external malicious
hosts sending traffic to the firewall’s network. Another ad-
vantage of analyzing outgoing traffic is that malicious pack-
ets can be dropped at the source firewall before entering the
Internet. However analyzing outgoing traffic cannot aid a fire-
wall in protecting itsownnetwork, since the characteristics of

Infected

Alerted

 Normal Detected

successful
worm scan

implicit/
explicit alert

local detection

implicit &
explicit alerts

Figure 2:State Transition

outgoing traffic change onlyafteran internal host is infected.

Propagation: A firewall that has detected infection within
its network using a local detection mechanism informs other
firewalls of its infection. In our simplest scheme, a firewall
can report only of itsown infection: it cannot be implicated
by other firewalls. This rules outsetupattacks by which mali-
cious firewalls make false accusations. When a detected fire-
wall notifies other firewalls, other firewalls are said to be
“alerted” to the attack. There are two forms of such notifi-
cations:implicit andexplicitsignaling.

In the implicit method, a detected firewallmarksall sus-
picious outgoing packets. This marking serves two purposes.
First, it informs the destination firewall that the packet is pos-
sibly malicious, and thus the packet should be dropped. Sec-
ond, the destination firewall is also notified that the source
network is infected. This can enable the destination firewall
to install filters before its own network gets infected: this is
the essence of cooperation. In explicit signaling, the firewall
begins to send notifications of its infection to other participat-
ing firewalls. The detected firewall sends such notifications to
other participating firewalls at some rate (perhaps varying the
rate with the level of perceived infection). These notifications,
both explicit and implicit, include some information about the
worm attack: specifically, filters that can be used to identify
malicious packets. Thus, every firewall is in one of the fol-
lowing four states (indicated in Figure 2): quiescent, alerted,
infected and detected.

Filtering: An alerted firewall installs filters and drops mali-
ciousincomingtraffic matching these filters. A detected fire-
wall also installs such filters, and marks matchingoutgoing
traffic. These filters are based on port numbers: any traffic
on alerted ports is dropped. A port number filter is cheap to
implement, and is resistant to polymorphic worms. In some
cases, dropping all packets based on a port number might be
too drastic even during an attack. For example, an organiza-
tion might want its web server to be accessible to clients even
during a worm attack. For such commonly used ports like the
HTTP port, we assume that the port filter is also augmented
with some content filters as well. This content filter can as
simple as the URL in a HTTP request. The problem of de-
ducing content filters from malicious packets is outside the
scope of our work (Autograph [16] is a recent proposal on
finding such content filters).

3

3.2 Local Detection

The goal of a local detection scheme is for a firewall to ana-
lyze its outgoing traffic to detect infection within its network.
Our scheme is based on the observation that a legitimate con-
nection has a much lower failure probability than a worm scan
[18]. To detect an internal host infected by a TCP worm, every
firewall maintains the number of failed outgoing connection
attempts perinternalhost by observing whether it sees a SYN
ACK packet in response to a SYN packet sent by the host. A
UDP worm can be handled in a similar fashion by waiting
for a response from the remote machine. Most UDP proto-
cols require some sort of a response from the server (at least
to acknowledge the request), and this response can be used to
decide whether the connection succeeded or not.

Our local detection scheme maintains observations of con-
nection failure rates per internal host. If the number of such
failed connection attempts exceeds a given thresholdTf over
a time windowWf , then the firewall marks that host as in-
fected. This per-host infection state is timed out after a certain
duration. If per-host state is not possible, the firewall simply
maintains the aggregate number of failed connections over
all its internal hosts, and maintains per-host state only for the
heavy-hitter hosts. However, observe that once a single host
has been identified as infected, the firewall cannot rule out
the possibility that all hosts within its network are infected.
For this reason, when more than a certain numberNf of its
hosts are infected, then the firewall marks all of its hosts as
infected. It is now said to be in the “detected” stage. We as-
sume thatNf is chosen such that the probability of a false
positive in local detection is low.

Our local detection scheme is simple and straightforward
with low per-host cost. This detection scheme works only for
scanning worms, and fails for other classes of worms such as
DNS scanning worms, search engine querying worms. Other
schemes can be used in our framework:e.g., the Threshold
Random Walk (TRW) scheme [19] to improve sensitivity or
worm fingerprinting [20] to handle other classes of worms.
The performance of our worm containment scheme depends
only on the following metric of local detection: the number of
scans an infected host can make before being identified. With
other local detection schemes, it may be possible to improve
the performance of our scheme.

3.3 Propagation

A detected firewall begins to signal other participating fire-
walls of its own infection. In the implicit signaling method,
a detected firewallmarksall outgoing packets on the attack
port identified (or by using a content filter for commonly used
ports). These markings include filters identifying the worm
and can be implemented by using some bits in the IP header
or by encapsulating the packet if required. In explicit signal-
ing, the firewall directly sends notification to other firewalls
at rateE. We assume that each detected firewall knows the
identity of all participating firewalls. For now, we only con-
sider explicit signaling schemes where each detected firewall
sends signals to other firewalls at a constant rateE. This naive
method can easily be improved by, say, a publish-subscribe

based system. In such a system, the detected firewall need
not send its own notifications to other firewalls: it can pub-
lish it to other firewalls who can send these notifications to
interested firewalls. This improves the effective notification
rate. The implicit method has the advantage that no new pack-
ets are generated: thus it has minimal overhead. However, if
the infected host stops scanning after its firewall has detected
infection, then implicit signaling will be of no use. Explicit
signaling, on the other hand, has the other advantage that
the propagation is independent of the scanning pattern of the
worm.

We now describe three specific issues in implementing
propagation. First, if a firewall has identified some hosts as
infected but has not yet entered the detected stage (because
the number of such hosts is less thanNf), then it can rate-
throttle or simply drop outgoing connections from that host.
It should not however propagate markings to other firewalls to
avoid false positives at the global level. This helps deal with
hosts that initiate port-scanning. Second, at the later stages of
infection, the firewall can start dropping outgoing scans us-
ing the filter to detect such scans. This can be done without
any impact on propagation if a signal has already been sent to
the scan’s destination firewall. Third, in both types of signal-
ing, the destination firewall must be able to authenticate the
source of the signal: otherwise a malicious end-host could
simply generate fake notifications by using address spoofing.
We use a simple challenge-response scheme for this purpose.
Such authentication can be performed by simply contacting
the allegedly infected firewall, and verifying that it indeed
originated the signal.

3.4 Filtering

There are two types of filters installed in our scheme. The
first is an outgoing traffic filter deployed at detected fire-
walls in order to mark matching packets (for sending implicit
signals). The second is an incoming traffic filter established
at all alerted firewalls. This filter drops marked packets: the
source firewall is in the best position to decide whether its
hosts are infected, and all such possibly malicious packets
will be dropped. When a firewall receives an alert from an-
other firewall, due to our trustworthy firewall assumption, it
assumes that an Internet-wide worm attack is in progress, and
drops all incoming traffic (marked/unmarked) matching the
filter specified in the alert. Thus, once a firewall is alerted,all
traffic matching the filter is dropped. Designing filters that ac-
curately identify worm traffic with a low false positive ratio
is outside the scope of this work: we use simple port-based
filtering augmented with content filters for commonly used
ports.

4 Modeling

We now analyze the effectiveness of the scheme proposed in
the previous section in the complete deployment scenario.
Our measure of effectiveness is the fraction of networks
which escape infection att = ∞: this is thecontainment
metric (C).

4

N Total number of Vulnerable Firewalls 1, 00, 000
n Number of Deployed Firewalls 1, 00, 000
h Number of vulnerable hosts per firewall 10
p Successful probe rate 0.00025
s Scanning rate of worm 4000 per sec
td Detection time 0.2 secs
λ Birth Rate phstd

sn Normalized Scan Rate phs/N

σ Defined for notational convenience λ−1
td

Table 1:Default setting of parameters in our model

4.1 Parameters

The default parameters used to evaluate our solution are spec-
ified in Table 1. Apart from the network and worm model
parameters, this table also includes other variables that will
be defined later to aid in the analysis. Our network model
and worm model are as specified in Section 2. The param-
eters were chosen based on the homogeneous cluster model
of Slammer victims [21]. We set the scan rate to the aver-
age scan rate during Slammer. We set the total size of the
vulnerable population to that of Blaster [5], one of the most
wide-spread worms. We assumed1 million vulnerable hosts
divided equally among1, 00, 000 vulnerable networks. The
probability of a successful probep is the number of vulnera-
ble hosts divided by the size of the IP address space.

Each deployed firewall sets a threshold ofTf failed con-
nection attempts over a time windowWf . In our analysis, we
assume thatTf is aggregated over all internal hosts: that is,
the firewall maintains only an aggregate count of failed con-
nections. Thus, if all theh vulnerable hosts behind a firewall
are infected and scan at a rates, the firewall will enter the
detected stage, once it seesTf failed connections withinWf

seconds. The average number of failed connections seen per
second by an infected firewall ishs(1− p), and thus the fire-
wall will detect infection within timetd = Tf

hs(1−p) : we call
td thedetection time. We used a threshold of800 failed con-
nections per host: this givestd = 0.2. Note that it is advan-
tageous for all the infected hosts in the network to probe at
the same time: otherwise, the firewall would cut off the other
hosts after identifyingTf connection failures.

We model the infection process as follows. At any point in
time, there are four types of firewalls: infected firewalls have
detected their infection, infected firewalls that have not yet
detected their infection, uninfected firewalls that have been
alerted by some detected firewall, and uninfected firewalls
that have received no alerts. At timet, denote byni(t) the
number of infected firewalls, bynd(t) the number of detected
firewalls, and byna(t) the number of alerted firewalls.

4.2 Effectiveness of detection and filtering

First, we analyze a simplified variant of our scheme without
any propagation (thus, there is no sharing of information be-
tween firewalls). In this variation, a firewall performs only
local detection and filtering (once it has entered the detected
stage, it installs a filter to drop outgoing scans). Thus, the only

defense against a worm attack is that an infected host can only
probe for timetd (after which all its scans will be dropped by
its firewall). The following lemma shows that such a simpli-
fied scheme is surprisingly effective (under some conditions).
We first defineλ = hsptd as the birth rate.

Lemma 1. If (λ < 1), then asN → ∞, the containment
metric C → 1. Further, if I0 and I∞ denote the number
of infected firewalls at timet = 0 and t = ∞ respectively,
E[I∞] = I0

1−λ .

Proof. We prove this lemma using a differential equation
model, which naturally extends to our analysis of propaga-
tion.

d

dt
(ni) = (hsp)(ni − nd) (1)

d

dt
(nd) =

(ni − nd)
td

(2)

The first equation follows since the rate of increase of in-
fected firewalls is the same as the rate of successful scans (ex-
pressed as the number of infected undetected networks times
the scanning rate per network). This equation overestimates
the value ofni(t), since it assumes that no scans are sent to
already infected firewalls. This overestimate suffices for this
analysis. The second equation shows that the number of de-
tected firewalls follows the number of infected firewalls with
a phase lag oftd (since it takes timetd for detection). Defin-
ing f(t) = ni(t) − nd(t), wheref(t) is the number of scan-
ning firewalls, gives the following equation (by subtracting
Equation (2) from Equation (1)):

d

dt
(f) = (hsp− 1/td)i

If λ < 1, then(hsp − 1/td) < 0, and thus this corresponds
to an exponential decay with a decay rate of(1− λ)/td. This
implies that asn → ∞, C → 1. One can also identify this
process as a birth-death process [22] in time steps oftd to
obtainE[I∞] = I0

1−µ(B) = I0
1−λ (proof omitted).

Corollary 1. If (λ < 1), then for any finiteN , C ≥ 1 −
I0

(1−λ)N against any class of scanning worm

Proof. Notice that in the previous proof, we used the assump-
tion thatN > N0 to ensure that no two successful probes
were sent to the same network. But, that is precisely what
the ideal smart scanning worm would do in order to avoid
wasteful probing. Thus any form of scanning worm can only
cause a lower containment metric: thusE[I∞] ≤ I0

1−λ and

C ≥ 1 − I0
(1−λ)N . Note that a smart scanning worm might

adopt strategies to increase the detection timetd: however,
given a specifictd, the containment is expressed by the above
equation.

4.3 Effectiveness of Implicit Signaling

In this section, we analyze the containment metric when im-
plicit signaling is used along with detection and filtering.
There is no explicit signaling, and this models the case of a

5

worm that performs a topological infection followed by uni-
form random scanning. We extend the differential equation
approach to account for implicit signaling as follows:

d

dt
(ni) =

phs(ni − nd)(n− ni − na)
N

= sn(ni − nd)(n− ni − na) (3)
d

dt
(nd) =

ni − nd

td
(4)

d

dt
(na) =

hs(nd)(n− ni − na)
N

=
snnd(n− ni − na)

p
(5)

Here,sn is the normalized scan ratephs/N defined for con-
venience. The first equation is the same as Equation (1) ex-
cept that we exclude scans that are sent to alerted or infected
firewalls. The second equation is the same as Equation (2).
The third equation calculates the rate of spread of alerts as
the number of alerts per detected firewall multiplied by the
probability of the alert being sent to an unalerted (and unin-
fected) firewall. We could not solve these equation exactly, so
we present two additional results: a closed-form upper bound
on the containment metric and numerical integration of these
equations. Our upper-bound is given in the following lemma:

Lemma 2. For λ > 1, the containment metricC by using

implicit signaling is at least1− (log(N)+c)tdσ2)
hs (1

tdσ +1) with

probability of at least1− e−e−c

, whereσ = (λ− 1)/td.

Proof. We derive a lower bound on the containment metric by
dividing the worm infection into two phases: the first phase
extends until the time all firewalls have been alerted, at which
point the second phase begins. In the second phase, the worm
cannot spread any further since all firewalls have been alerted.
We approximate the first phase as follows: we assume that no
firewall has been alerted, and thus the worm propagates just
as in the case of detection and filtering alone. Clearly, this
suffices to derive an upper bound on the number of infected
machines at the end of the first phase, and consequently a
lower bound on the containment metric. We first analyze the
progress of the worm in the first phase (there are no alerted
firewalls, only detection and filtering). This is the same as
Equations (1,2):

d

dt
(ni) =

(hsp)(ni − nd)(n− ni)
N

≈ (hsp)(ni − nd) (6)

d

dt
(nd) =

(ni − nd)
td

(7)

The first equation approximates(n−ni)/N to 1 since an up-
per bound ofni suffices for our purposes (we assume that the
number of infected firewalls remains low throughout the first
phase or equivalently that the worm does not probe infected
networks). This implies that:

d

dt
(ni − nd) = (phs− 1

td
)(ni − nd) = σ(ni − nd)

ni(t)− nd(t) = I0e
σt (8)

The first equation usesσ = (λ − 1)/td, whereλ is the birth
rate. We assumeλ > 1 since otherwise there is no necessity
for implicit signaling. The second equation follows by inte-
grating the first, and imposing the constraints thatnd(0) = 0
andni(0) = I0, the number of infected firewalls att = 0.
This can be substituted in Equations (6), (7) to deriveni, nd

as a function of time:

d

dt
(nd) =

I0e
σt

td
⇒ nd =

I0(eσt − 1)
tdσ

(9)

ni = I0e
σt(

1
tdσ

+ 1)− I0

tdσ
(10)

The first equation is obtained by integration, and the second
by substitution in Equation (7). These two equations track the
growth of the number of infected and detected firewalls in the
first phase. Based on this, we calculate thetotal number of
implicit signalsi(t) sent by timet as:

i(t) =
∫ t

0

(hs)nd dt =
∫ t

0

I0hs

tdσ
(eσt − 1)

=
I0hs

tdσ
(
eσt

σ
− t) (11)

The allocation of thesei(t) implicit signals sent by timet to
the various firewalls is analogous to the allocation of coupons
in the classical coupon collector’s problem [22]. Note that
the first phase ends when all firewalls have received at least
one alert each, analogous to the condition that all coupons
must be collected. Notice here that since the worm scans ex-
ternal networks uniformly at random, implicit signals follow
the uniform distribution as well. We use the standard result
that if m is the number of coupon collectors and the number
of coupons exceedsm log(m)+c m, then the probability that
all m collectors have one coupon each is at least1 − e−e−c

[22]. In our case, since each firewall must receive an alert to
get alerted, we usem = N . Thus, the timet1 at which the first
phase ends with probability≥ 1 − e−e−c

can be calculated

usingi(t1) = N log(N) + c N (we approximate
(

eσt

σ − t
)

to eσt

σ). This timet1 can be substituted in Equation (10) to
obtainni(t1), the number of infected firewalls at the end of
the first phase as:

ni(t1) =
Ntdσ

2(log(N) + c))
hs

(
1

tdσ
+ 1) (12)

and thusC = 1− ni(t1)
N with probability≥ 1− e−e−c

.

Implications: We substituted the different parameters from
Table 1 to obtain the upper bound.σ is calculated to be5 and
we choosec so as to reduce the error probability to less than
10−3. We getC ≥ 97.3%, which is very effective. Thus, im-
plicit signaling works well under the trustworthy firewall as-
sumption. Note in this case, thatλ = 2, which means that de-
tection and filtering would not work against this worm. This
lemma also tells us how the containment metric behaves with
respect to the various parameters. Note thattd varies withs
astds = k1, a constant (sincetd = T

hs(1−p)). Thus,C can

6

 1

 10

 100

 1000

 10000

 100000

 1

N
um

be
r

of
 fi

re
w

al
ls

 (
lo

g
sc

al
e)

Time (sec) (log scale)

Infected
Detected

Alerted

Figure 3:Dynamics with Time

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0.001 0.002 0.003 0.004

C
on

ta
in

m
en

t

Fraction of Vulnerable Hosts

Containment

Figure 4:Containment versus varying vulnerable population sizes

be simplified to1 − log(N)p2hk1(1
k1hp + 1) at high scan-

ning rates by approximatingσ = phs. Note that implicit sig-
naling along with our local detection scheme is unaffected
by the scanning rate of the worm, since the rate at which
signals are sent increases linearly with the scanning rate of
the worm. Also observe the containment metric decreases as
log(N) and quadratically with respect top. This highlights
one of the main disadvantages of implicit signaling: the rate
of signaling is limited by the scan rate of the worm itself and
these scans can only be sent in a random fashion.

4.3.1 Numerical Solutions

In order to understand the properties of our propagation
scheme and local detection separately, we first study our
propagation scheme at various values oftd (the time for a
firewall to enter “detected” stage once all its hosts are in-
fected). The local detection scheme determines the value oftd
as T

hs(1−p) . The detection timetd is lower at higher scan rates,
so our local detection schemes detect faster worms faster.

Temporal Dynamics: The dynamics of the number of in-
fected, detected, and alerted firewalls over time is plotted in
Figure 3. The the number of detected firewalls always lags be-
hind the number of infected firewalls as expected. Very early
in the propagation, the number of alerted firewalls surpasses
the number of infected firewalls, and from then on, grows like
the classic sigmoid curve. This is because we are using im-
plicit signaling, in which case the spread of alerts is similar
to that of the worm itself.

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 4000 6000 8000

C
on

ta
in

m
en

t

Scanning rate (per sec)

Containment

Figure 5:Containment versus scan rate

 0.982

 0.984

 0.986

 0.988

 0.99

 0.992

 0.994

 10000 20000 30000 40000

C
on

ta
in

m
en

t

Rate of explicit signalling (per sec)

Containment

Figure 6:Containment versus explicit signaling rate

Effect of number of vulnerable hosts: The containment
metric of implicit signaling is plotted against the size of the
vulnerable population in Figure 4 (b). We increased the num-
ber of vulnerable networks as we increased the size of the
vulnerable population (such thath was constant). Again, as
suggested by the analysis, there is roughly a quadratic drop
in C with p.

Effect of Scanning Rate: The performance of implicit sig-
naling against the scanning rate of the worm is shown in Fig-
ure 5. Along with the scanning rate,td was also varied such
that their product was constant (as mentioned, before this is a
property of our local detection scheme). As suggested by the
analysis, the performance of implicit signaling is independent
of the scanning rate of the worm: there is no variation despite
a two-fold increase in the worm scan rate.

4.4 Effectiveness of Explicit Signaling

In the naivest form of explicit signaling, each detected fire-
walls send signals at a constant rate ofE per second to ran-
domly chosen firewalls. In this case, the containment met-
ric can be obtained in a similar fashion to the derivation in
the previous section: the result can be obtained by simply
substitutinghs = hs + E in the lemma to obtainC ≥
1 − (log(D)+c)tdσ2)

hs+E (1
tdσ + 1). This analysis can be further

made tighter since explicit signals will not be sent to the
same firewall twice. Even in this naive method, settingE = s
(same as the scanning rate of the worm), improves the con-
tainment metric to above98.5%. Thus, this formula can be
used to compute the rate of explicit signaling required to
achieve a given containment metric. This same extension can

7

be used in the analysis in Equations (3,4,5). This analysis also
indicates that in order to maintain the same containment met-
ric with increasing number of firewalls, the rate of explicit
signaling need only grow logarithmicallyO(log(N)).

Effect of rate of explicit signaling: The containment met-
ric of explicit signaling is plotted against the rateE in Figure
6. It shows the variation asE is varied (in multiples of the
worm scan rate). The containment metric improves with the
ratioE/hs, and one can achieve a desired containment metric
by increasing the rate of explicit signaling.

4.5 Non-uniform host distribution

We now show that our analysis is also useful in the case when
the distribution of vulnerable hosts is non-uniform. If most of
the vulnerable hosts live only in a few networks, then one
can approximate it by definingh based on the number of vul-
nerable hosts in those networks, and definingp based on the
global density in the 32-bit IP address space. It is also pos-
sible that the distribution of vulnerable hosts is uneven even
among the vulnerable networks. In the case of Slammer, this
was indeed the case [21]. Our analysis also sheds light on the
effectiveness of our scheme under such a distribution. In this
case, note that the performance of implicit signaling does not
depend on the distribution. This can seen from Equations (3,
5): the differential d

dni
(na) is independent ofh, the number

of vulnerable hosts in each network. This differential, in fact,
does not depend on the number of vulnerable hosts in each in-
dividual infected network. Thus, one can derivena = g(ni)
whereg is a function independent of the distribution of vul-
nerable hosts. The containment metricC can also be obtained
by solvingna = g(n− na) wherena = Cn, since att = ∞,
all networks are either infected or alerted. Thus, although the
time for containmentwould depend on the distribution, the
containment metricitself would not. In the case of explicit
signaling, the ratioE/hs determines the containment: in this
case, a firewall with a greater number of infected hosts can
send explicit signals at a higher rate. Thus, our schemes and
analysis can also be applied to deal with the non-uniform
distribution of vulnerable hosts among vulnerable networks.
However, note that there are other effects in the Internet that
are not captured by our model such as heterogeneous access
link capacities noted in the case of Slammer [21].

4.6 Summary

In this section, we have shown that for different ranges of
λ = phstd, different measures are effective. Detection and
filtering is the simplest scheme: there is no need for coordi-
nation between multiple firewalls and scans are dropped at
the source firewall after detection. Even this simple scheme
works in the regimeλ < 1. However, there is the possibility
for faster worms withλ > 1. For such worms, implicit propa-
gation gives good containment under the trustworthy firewall
assumption in the complete deployment scenario. This con-
tainment can be further improved by adjusting the rate of ex-
plicit propagation to achieve the desired containment level.

This analysis also serves to highlight the tradeoffs between
implicit and explicit signaling.

Our analysis also reveals the sensitivity of containment to
the various parameters in the model, which can be helpful in
identifying ways to improve containment. For example, our
analysis can be used to determine the granularity at which
firewalls should be deployed. It also helps us to determine
how sensitive a local detection scheme should be, so that a
desired level of containment can be attained. We note that our
simple local detection scheme seems to have low enough de-
tection timetd so that good containment is possible. Our local
detection scheme uses failed connection attempts to find in-
fected hosts, and can detect faster scanning worms in a shorter
time. This variation can be described astds(1−p) = constant,
where the constant depends on the desired probability of false
negatives. We have usedtd = 0.2 for a worm with a scan rate
of 4000 per second, using the threshold for failed connections
as800.

Also note that our analysis can be extended for classes of
worms other than scanning worms. The use of an explicit de-
tection timetd allows the analysis of the propagation scheme
to be decoupled from local detection. Our local detection
mechanism works only for fast scanning worms, and that fact
is used to derivetd. The above analysis also works for other
kinds of worms and suitable local detection. The only con-
straint is that local detection must be able to detect an in-
fected network withintd seconds. For example, a worm that
uses a pre-generated hit list can be detected by say, a scheme
counting the number of unique destination IP addresses in the
outgoing traffic. In this case, one would also setp = 1 since
every scan is successful. Our analysis can then be used to de-
termine how low the detection timetd must be for a given
level of containment: this can be used to evaluate local detec-
tion schemes.

5 Partial Deployment

In this section, we remove the requirement of complete de-
ployment, and handle the scenario when not all firewalls in
the Internet participate in our cooperative. We first propose
a simple technique that works in the partial deployment sce-
nario, and then describe a technique calledrerouting to im-
prove the containment metric.

5.1 Baseline Solution

As a first cut, we observe that our existing scheme for propa-
gation works even without assuming local detection at every
firewall. In this scenario, only the deployed firewalls perform
detection and propagation: undeployed firewalls do not en-
gaged in local detection, propagation, and installing filters.
All the undeployed firewalls will be infected eventually (since
an infected undeployed network can always probe other un-
deployed networks). The only benefit for such networks is
that the worm propagation time is increased since deployed
firewalls drop outgoing scans (after detection).

8

S

D1

D2

A

(source
firewall)

(destination firewall)

(analysis firewall)

Packet

(Rerouting)

Figure 7:Rerouting

5.2 Rerouting

The basic idea to improve the effectiveness under partial de-
ployment is to emulate the idealized model usingrerouting.
Rerouting is similar to the concept of wormholes in [12] with
the main difference that we employ it in a decentralized con-
text. We first describe rerouting, and then elaborate on how
we use rerouting to improve performance under incremental
deployability. We mention the main limitation of rerouting
when used in the incremental deployment scenario: it works
only for a TCP worm or a bi-directional UDP worm. We as-
sume that the firewalls in our cooperative can verify whether
this condition holds true and invoke rerouting if so.

So far, we have relied on the source firewall (the firewall
of the source’s network) to monitor its outgoing traffic, detect
infection and then initiate signaling. This is not possible if
the source firewall does not implement our scheme. For this
reason, we use a rerouting mechanism that allows other fire-
walls to monitor theirincomingtraffic and attempt to detect
infection of the source firewall. This rerouting mechanism is
based on a mapping (say, based on a hash function) from a
sourcefirewall to ananalysisfirewall. All firewalls can com-
pute this mapping. All deployed firewalls redirect incoming
traffic coming from firewallX to the analysis firewall forX,
denoted byA(X). Here,X is an undeployed firewall, and
A(X) is a deployed firewall. We refer to this mechanism as
rerouting. This is similar to receiver controlled redirection
proposed in overlay networks literature (for example, ini3
[23]).

The main idea of rerouting (illustrated in Figure 7) is that
the analysis firewallA(X) for X can perform local detection
and propagation on behalf ofX. If all firewalls redirect their
incoming traffic fromX, then all traffic sent byX is seen at
A(X). This means that the firewallA(X) can exactly mirror
the state that would be maintained atX. Since only deployed
firewalls would forward traffic fromX to A(X), the traffic
seen byA(X) does not include traffic sent byX to otherun-
deployedfirewalls. Thus, the traffic seen byA(X) serves as a
crude sampling of the traffic sent byX. Thus,A(X) can carry
out detection and propagation on behalf ofX (of course, it is
up toX itself to filter its incoming traffic). Our local detection
scheme requires per-host state regarding connection failure
rates: this state is available atA(X) which can thus detect

the infection of networkX using the same test.A(X) can
also propagate signals on behalf ofX. Implicit signals can be
propagated sinceA(X) can mark a redirected packet before
returning it to the destination firewall. Similarly, it can also
propagate explicit signals on behalf ofX. Other firewalls can
verify such a signal by ensuring the source of such a signal is
indeed the analysis firewall forX.

Thus, eachdeployedfirewall acts as an analysis firewall
for a set ofundeployedfirewalls, and maintains state and per-
forms propagation on their behalf. This improves the con-
tainment metric because scans from undeployed firewalls will
also be detected and used to initiate propagation. Note how-
ever that this scheme only monitors the scans sent by an unde-
ployed firewall to some deployed firewall: probes from an un-
deployed network to another are not routed through an anal-
ysis firewall. Thus, this is only an approximation of the ide-
alized scenario when all firewalls are deployed. Another re-
spect in which rerouting differs from the idealized scenario is
as follows: if it is possible for the worm to spoof source ad-
dresses, then rerouting does not work since an infected host in
an undeployed network can spoof the address of a host in an-
other undeployed network. TCP worms or UDP exploits that
require the host to send a response cannot spoof the source ad-
dress: only single packet UDP worms can do do. Of course, if
the undeployed networks implement egress filtering, this can
be avoided.

This scheme requires the overhead of redirecting every
packet to an analysis point: in practice, this may be avoided
by redirecting only connection setup packets. The filtering
itself can be performed at the destination firewall: the anal-
ysis firewall only marks the packet. Two datasets used in
TRW [19] in fact offer evidence that the number of connec-
tion setup packets may be low enough to implementing such
rerouting with manageable overhead. In the first dataset, the
number of inbound connections to217 hosts (living in an
address space of512 hosts) is about160, 000 over one day,
which means an average of about0.008 new connections per
second per host. In the second dataset on a much busier net-
work, the number of inbound connections to about6000 hosts
(in an address space of about130, 000) is15.6 million, which
amounts to an average of0.003 new connections per second
per host. Assuming a 40-byte TCP SYN packet, rerouting
amounts to less than1 KB/s average bandwidth even in the
busier network. This suggests that rerouting connection setup
packets may be feasible in practice: this assumption needs to
be verified further by more traces. Note however that con-
nection setup will be delayed by the round-trip delay. Other
optimizations may also be possible in practice, such as, sam-
pling or sending summaries of connections instead of sending
notification about every single connection.

5.3 Numerical Results under partial deployment

Unlike the complete deployment case, note that detection and
filtering will not work in any regime under partial deploy-
ment (thus, Lemma 1 does not hold). We have derived a dif-
ferential equation model for the partial deployment scenario
in Appendix A. We now illustrate numerical results based

9

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
on

ta
in

m
en

t

Fraction of deployment

Implicit
Implicit, Rerouting

Explicit
Explicit, Rerouting

Figure 8:Containment versus Deployment

on this model. As before, all parameters are chosen from
Table 1. For a fixed number of total firewalls, the graph in
Figure 8 shows the variation of the containment metric with
fraction of deployed firewalls. On this graph, we show four
plots: one with implicit signaling, one with implicit signal-
ing along with rerouting, one with explicit signaling, and one
with explicit signaling combined with rerouting. In the last
two cases, implicit signaling was also used. The explicit sig-
nals are sent at rateE which is set to10% of hs, the scan-
ning rate of an infected network. Even without rerouting, im-
plicit signaling perform reasonably well. This is because the
containment metric for implicit signaling depends only on
log(n), and thus there is not much drop in the performance.
Thus, even against a single packet UDP worm, our schemes
provide good containment (over92% under1% deployment).
Rerouting helps to improve the performance when combined
with implicit signaling: in the1% deployment scenario, it im-
proves the containment metric to over97%. Explicit signaling
performs very well even under1% deployment offering over
99% containment. The main reason for this is that explicit
signals are sent to only participating firewalls, unlike implicit
signals which will be wastefully sent to all firewalls.

6 Security

In this section, we perform a security analysis of our scheme
against various kinds of attacks and discuss defensive mea-
sures. There are three types of security attacks in our sys-
tem depending on the perpetrator: malicious end-hosts, ma-
licious firewalls, and smart worms. The second category also
includes false alarms triggered by incorrect information prop-
agated by misconfigured firewalls (that do not have malicious
intent).

The first category of attacks is easy to defend against in
our system. Any signaling initiated by an end-host will be
rejected (we assume that all firewalls know each other’s ad-
dress, and as mentioned before, a challenge-response mech-
anism precludes address spoofing attacks). An end-host can
attempt to trigger fast alarms by sending scans. If the num-
ber of such end-hosts within a firewall is less thanNf (the
threshold for the number of infected hosts required to enter
the detected stage), then the firewall will only block traffic
generated by such malicious end-hosts. Otherwise, the fire-

wall will itself trigger a false alarm, and we treat this firewall
as a malicious firewall (and such attacks will be considered in
the second category). Thus, an end-host has limited ability to
influence the detection capability or the propagation. Attacks
by malicious firewalls and smarter worms are harder to deal
with: these will be the subject of the next two sections.

6.1 Malicious Firewalls

Some of the firewalls in the cooperative could be malicious
and attempt to trigger false alarms or suppress signals. We
only attempt to deal with the case when there are a few such
firewalls in the cooperative: cases where firewalls themselves
are subverted by a worm are beyond the scope of this work.

First, note that in our scheme, one firewall cannot implicate
another: a firewall can only initiate signals (implicit/explicit)
about itself. Of course, this requires that the source of every
signal be verified by the recipient firewall using a challenge-
response mechanism. In the case of implicit signals, the re-
cipient can request verification from the allegedly infected
firewall, and drop the signal if the latter does not confirm the
notification. The same can be done for explicit signals as well.
In the partial deployment scenario, only the analysis firewall
A(X) of X is authorized to send signals aboutX: signals
sent by other firewalls implicatingX will be rejected. Note
however in this case, that a malicious firewallM can route
a SYN packet toA(X), spoofing the source address of the
packet toX. A(X) would then notice that there was no re-
sponse to this packet, and would incorrectly conclude thatX
was originating the packet. IfX were deployed,A(X) could
verify by askingX whether it was indeed was the source,
before initiating markings: however, ifX is one of the unde-
ployed firewalls, this protocol does not work. One straightfor-
ward solution to this problem is thatA(X) wait for reports of
connection failures from several firewalls before considering
X to be infected. Note that this issue arises only in verify-
ing signals from analysis firewalls that monitor undeployed
networks.

This leaves us to consider the case when a malicious fire-
wall propagates incorrect infection about itself. There are two
kinds of such attacks: the firewall can claim to be infected and
thus aim to trigger an Internet-wide false alarm, or the firewall
can suppress notifications when itself infected. Regarding the
first class of attacks, note that a malicious firewall can always
pretend to be infected by originating scans on its own. It is not
possible to distinguish between such a malicious firewall and
a truthful firewall with infected hosts. Thus, in a large cooper-
ative, there will be a few firewalls that can behave maliciously
to trigger such scans, and our solution to this problem is to re-
quire that each firewall should receiveD alerts from different
firewalls before entering the alerted stage. Such a scheme can
resist up toD malicious firewalls behaving in such a fashion.
Our aim is to resist such attacks from a few hundred firewalls,
beyond which, auditing by other firewalls may be used to dis-
courage such behavior. We discuss the implications of this
modification in Section 6.1.2.

10

6.1.1 Redundant Rerouting

We now discuss how the rerouting mechanism can be ex-
tended in order to deal with the second class of attacks.
The basic idea is that there arem analysis firewalls associ-
ated with every source firewall. Note that this mapping from
source firewall to a set of analysis firewalls is based on a hash
function. The simplest form of such redundant rerouting is as
follows: each deployed firewall sends a copy of an incoming
packet from source firewallX to each of thesem analysis
points, and delays the packet (by storing in a local buffer).
Each of these analysis firewalls notifies it (implicit/explicitly)
of its decision on whether the source network is infected. The
firewall now takes the majority consensus of these decisions,
and decides whether to admit such a packet or not. Of course,
all these packets can be sent in parallel to them analysis fire-
walls, so only a single round trip will be incurred. Moreover,
as discussed before, only connection setup packets need be
forwarded, and sampling techniques can be used.

6.1.2 Implications

We now examine the containment metric under the condi-
tion that D distinct alerts have to be received by a sin-
gle firewall to get alerted. An exact analysis, similar to that
in Section 4.3, can be made by using(D + 1) differen-
tial equations to track the number of firewalls that have re-
ceived0, 1, · · · , (D−1), D alerts. This analysis amounts to a
Markov chain model, where the transition probabilities vary
with time: this makes the differential equation method very
cumbersome. The analysis used to obtain the lower bound on
containment metric can however be applied to derive:

Lemma 3. For λ > 1, the containment metricC by using

implicit signaling is at least1− (Dlog(ND)+cD)tdσ2)
hs (1

tdσ +1)

with probability of at least1−e−e−c

, whereσ = (λ−1)/td.

The only change required is that the number of alerts
required before the first phase finishes, has to be at least
(NDlog(ND) + cND) since each of theN firewalls has to
receiveD distinct alerts. For the default values we have been
using (from Table 1), we now setD = 10 malicious firewalls.
We getC ≥ 77%, which is still effective. Observe thatC de-
creases withDlog(D), and cannot deal with more than a few
hundred malicious firewalls. This analysis can also extended
to include explicit signaling by replacinghs with (hs + E).
The rate of explicit signaling can be adjusted to deal with ma-
licious participants. This required signaling rate scales at the
rate of the number of malicious participantsD that we wish
to resist (forD ¿ N , log(ND) grows slowly withD, and
can be considered to be a constant). Thus, we can resist, say
100 malicious firewalls, by settingE = 10hs for a contain-
ment for77% (since we can resist10 malicious firewalls for
the same level of containment with no explicit signaling).

The parameterD can be increasedwithoutaffectingC as
follows: it is possible for firewalls to form sub-cooperatives
of size k among themselves. The firewalls in such a sub-
cooperative agree to forward all signals to one another, and
enter the alerted state upon collectively observingkD distinct
alerts. Thus, this scheme resists up tokD malicious firewalls

without affectingC (assumingkD ¿ √
CN to avoid dupli-

cate markings by using the birthday paradox). Note again that
alerts can always be verified in our system, and thus, even
if there are malicious participants in the sub-coalition, they
can only slow down detection by dropping alerts: they cannot
trigger any false alarms. Thus, it is possible to use other tech-
niques to increase the effectiveD, without affectingC. This
technique can handle about a thousand malicious nodes with
modest group sizesk (of say, a few hundred).

Note that redundant rerouting itself can be easily made re-
silient to malicious firewalls with low values ofm. If there
areD malicious nodes, the probability of more thanm/2 fire-
walls being malicious can be derived using Chernoff’s bound

(for low values ofD/N): e
−mN2

8D(N−D) . This can be made very
low by modest values ofm (≤ 5).

6.2 Evasive Worms

We now consider worms that specifically attempt to attack
our scheme (e.g.,do some form of “smart” scanning). We first
discuss worms that attempt to evade local detection, and the
move on to worms that attempt to subvert propagation. Note
that filtering techniques may be susceptible to polymorphic
worms [24] or worms that use a different exploit in successive
phases of its attack: such attacks are beyond the scope of this
work.

6.2.1 Evading Local Detection

The performance of our scheme clearly depends on the sen-
sitivity of the local detection mechanism. The first observa-
tion that we make is that a typicalfastscanning worm cannot
evade local detection. The simplest technique to thwart detec-
tion is to scan at a rate similar to legitimate traffic: assuming
that a legitimate host has about1 failed connection attempt
every10 seconds, a worm that scans at this rate requires about
4.6 days to infect a vulnerable population as large as that of
Slammer, and about a day to infect a population as large as
that of Blaster. A worm that scans faster than this rate will
trigger off the local detection scheme. Note that this can be
improved by using better local detection schemes suggested
in TRW [19], Worm fingerprinting [20]: as research advances
in such schemes, they can be plugged into our model. This
means that if a set of hosts behind a firewall are infected by
a fast scanning worm, there will not be any false negatives in
the local detection. Of course, slow worms can evade our lo-
cal detection: such worms are beyond our consideration. Sec-
ond, observe that it is not possible for a malicious host in an
externalnetwork to make a firewall conclude that its network
is infected. A firewall observes onlyoutgoingtraffic to de-
cide whether it is infected. These two observations mean that
our local detection scheme can be designed to have low false
negative and low false positive ratios. False positives can only
occur with a malicious internal host which behaves like an in-
fected host: this is controlled by the parameterNf .

Second, there could be worms that choose the destination
of their scans by some mechanism other than scanning. They
could rely on pre-generated hit lists or DNS scanning etc: we
assume that suitable local detection schemes can be found

11

to deal with such worms and can be plugged in. Since our
work decouples the efficacy of the local detection scheme
from propagation itself, our results may be of use to handle
other types of worms as well.

6.2.2 Evading Propagation

Next, we move on to attempts by worms to influence prop-
agation. First, consider worms that aim to alter their scan-
ning pattern over time in order to thwart propagation (but still
choose their destinations randomly). Such worms can influ-
ence the propagation of our signals. This points to one of
the chief advantages of explicit signaling: unlike implicit sig-
naling which piggybacks signals on scans, explicit signaling
does not. Thus, in the limit, a worm could simply stop scan-
ning after its firewall has entered the detected stage, since be-
yond this point, all its scans will be marked and cannot infect
any new hosts. In this case, implicit signaling is completely
ineffective. Note however that setting the rate of explicit sig-
naling E to the scanning rate of the worms has the same
effect as implicit signaling over a constant scan rate worm.
This implies that explicit signaling can always be relied upon
to handle such smart worms (our earlier analysis applies in
this case).

Second, consider worms that choose their destination by
using some smart algorithm (such as hit-list based) or by us-
ing coordination among themselves. For example, hosts in
one firewall could agree to probe only10 other networks. In
this case, implicit signaling is adversely affected. However,
explicit signaling still works: once such a worm is detected,
explicit signals will continue to be sentrandomly, which en-
sures that the signaling rate will not be slower than of implicit
signaling containing a random worm. Note however that the
infection pattern of the worm will not follow the analysis, and
is dependent on its scanning algorithm.

Third, note that in the partial deployment scenario, there is
a potential for worms that operate in two phases as follows:
they coordinate amongst each other to first infect all the unde-
ployed firewalls, and then all these infected firewalls begin to
scan the deployed firewalls. Thus, until the beginning of the
second phase, the deployed firewalls would not see any scans
and would have no way to detect such a worm. Even in this
case, our analysis can be used to show that with10% deploy-
ment, about50% containment can be achieved against such
a worm (the containment was obtained by solving the differ-
ential equation model for partial deployment in Appendix A,
using the initial condition that all undeployed firewalls are
infected at timet = 0).

7 Related Work

There are several types of worms known in literature [8],
and this work only deals with fast scanning worms. Other
types of worms include those based on a pre-generated hit
list or those that spread by consulting global directories. As
we have mentioned before, it might be possible to extend our
techniques to handle such worms by modifying the local de-
tection scheme suitably: our results on propagation still ap-
ply. In general, dealing with scanning worms is considered

a hard problem: a paper on Internet Quarantine [9] suggests
that most known defense mechanisms such as patching, fil-
tering might not work against very fast worms. Dealing with
known worms is easy since signature based schemes (imple-
mented in Snort [25], Bro [26]) can effectively contain non-
polymorphic known worms. This work deals with zero-day
attacks in which the vulnerability exploited by the worm is
not known in advance.

The problem of defending against Internet worms has at-
tracted considerable research effort, which we classify into
four main categories. The first category includes works that
attempt to use detection mechanisms atend-hostsin or-
der to detect malicious packets. Stackguard [27] deals with
software-based mechanisms for identifying stack smashing
attacks, while there is also work on identifying malicious
packets by tracing the pattern of system calls made by a pro-
cess [28]. Vigilante [29] discusses leveraging such end-host
based mechanisms in order to detect and spread information
about worm attacks. Rate-based throttling [30] of initiation of
connections to new IP addresses has been suggested on a per-
host basis in order to increase the worm propagation time. In
general, such host-based mechanisms can detect a wider class
of worms since they have access to a more detailed level of
information. However, in comparison with firewall based so-
lutions (such as ours), they involve a heavy initial deployment
cost: every end-host in a network has to be appropriately in-
strumented for protecting the network. Indeed, that is one of
the chief reasons why firewalls have been so successful: they
can transparently protect an entire network.

The second category consists of detection schemes that op-
erate at asingle observation point(not at the end-host) in or-
der to detect a worm attack in progress. These can serve as
local detection schemes in our framework. Methods to de-
tect port scanning can be adapted to detect address scanning
worms as well:e.g.,Spice [31] uses statistical anomaly de-
tecting techniques to cluster suspect packets into portscans.
Threshold random walks [19] is a more recent proposal where
a hypothesis testing model is used to identify portscans, and
this scheme has been extended for fast detection of scan-
ning worms in [18]. Worm fingerprinting [20] aims to iden-
tify signatures based on flow characteristics observed using
lightweight mechanisms operating at core routers: such char-
acteristics include identifying identical traffic, diverse IP ad-
dresses, and failed connections. This scheme has been ex-
tended to design an early bird worm detection system [32].
Honeypots have also been proposed for early detection of
worms (Honeycomb [33]) and there also have been propos-
als to build such honeyfarms by implementing several virtual
honeypots on a single machine [34]. Network telescopes [35]
proposes methods for tracking an Internet-wide worm attack
based on observations of packets sent to a large unallocated
address space. In general, these mechanisms offer the poten-
tial of very high sensitivity (with commensurate monitoring
load as well), and are suitable for detecting worms at a single
observation point. We view such work as orthogonal to our
work. It is possible to envision a cooperative scheme where
some of the participants can be honeyfarms dedicated for the
purpose of detection.

12

The third category of work relates to proposed architec-
tures for worm detection and containment involvingmulti-
ple vantage points. There are two classes of such architec-
tures proposed in literature: the first consists of architecture
that perform distributed data collection followed by central-
ized analysis and second deals with decentralized architec-
tures where all participants are implicitly trusted. Weaver et
al [12] propose the use of firewalls that redirect traffic via
virtual links (calledwormholes) to a few designated honey-
farms. These honeyfarms consist of several honeypot ma-
chines, that can detect malicious payload. The concept of
wormholes has also been in commercial use (e.g.,Counter-
pane [36]). Wu et al [37] propose an architecture where mon-
itoring points within the network convey statistics to special-
ized analysis points. These statistic are used to identify in-
fected hosts and to black list their address. Zou et al [38]
propose Kalman filtering based methods to detect a worm at-
tack based on observations from several monitoring points.
This work also deals with statistical techniques for estimating
the size of the vulnerable population and the infected pop-
ulation. NetBait [39] is a distributed query processing that
provides users the ability to pose queries to identify infected
hosts. GrIDS [40] aims to detect worm attacks by analyzing
correlations in packet data collected from several monitor-
ing points. Worm infection usually has a distinctive causal
pattern of traffic which GrIDS aims to detect. Thus, these
solutions [12, 36, 37, 40] are all based on the paradigm of
multiple monitoring points redirecting traffic to a few dedi-
cated analysis points, and thus fall in the first class of dis-
tributed architectures. While such a paradigm may be useful
in certain contexts, we believe that the decentralized option
also holds promise since the analysis and detection load is
shared equally by all firewalls. This makes it harder to launch
directed attacks against the worm detection architecture it-
self. The second class of distributed architectures consisting
of trusted participants is very suitable for protecting an enter-
prise network. Containment within an organization network
was proposed by the use of hard perimeters to prevent infec-
tion from spreading between LANs [10]. This work discussed
issues in implementing worm protecting in hardware and is
concerned with protecting a single organizational network by
improving the granularity of monitoring points within the or-
ganization. Weaver et al [13] propose methods for very fast
containment within an organization that rely on communica-
tion between “cells” that trust each other. This class of dis-
tributed architectures has also seen commercial applications
(e.g.,CounterMalice [41]). Staniford [42] discusses contain-
ment within an organizational network by partitioning it into
multiple compartments. They also identify a sufficient condi-
tion for worm containment in their framework, which is the
same as our condition (Lemma 1 in Section 4) for contain-
ment under detection and filtering. Domino [11] is a more
decentralized architecture where the analysis locations are or-
ganized in a overlay. Domino uses a overlay only to distribute
the analysis operation: other monitoring points feed traffic to
this overlay. It mainly focuses on detection, and does not deal
with malicious participants. These solutions [10, 13, 41, 11]
assume implicitly that the participants trust each other: our

work aims to extend such cooperation schemes to the Inter-
net where this assumption may not hold true.

The last category of work relies on the filter model for
characterizing worms and for containing them. A filter is a
method of deciding whether a given packet is possibly ma-
licious worm payload. Autograph [16] attempts to infer a
content filter based on observations from several monitoring
points. It is based on the intuition that during a worm attack,
several packets contain similar looking content (the exploit
code itself). The efficacy of deployment of such filters in a
Internet-like graph is studied by Park et al [43]. Their finding
is that due to the power-law nature of the Internet, if filters
are deployed in the high degree nodes, then worm contain-
ment can be achieved. The effectiveness of such filters when
deployed at other locations within the network is considered
in dynamic quarantine [44]: this work demonstrates that if
deployed at backbone routers, rate throttling can be very ef-
fective. However, the impact of such throttling on legitimate
traffic, especially diverse traffic such as peer-to-peer appli-
cations has not been studied in practice. DShield [45] deals
with the placement of honeypot like code filters in the net-
work: specialized points in the network which run the code
found in packets to detect malicious packets. A architecture
for automatically detecting malicious packet and generating
vaccines for immunizing vulnerable end-hosts has been pro-
posed by Sidiroglou et al [46, 47]. Other proposals that rely
on router support for detecting and containing a worm include
a ICMP redirection based scheme [48] and DEWP [49]. Berk
et al [48] suggest that ICMP “destination unreachable” mes-
sages be redirected from some routers to a centralized anal-
ysis point, which can then detect a worm attack. In DEWP
[49], routers analyze the bi-directional traffic flowing through
them to identify port numbers that appear frequently in both
directions. In general, filter placement within the Internet core
seems to be necessary for some of these schemes. The feasi-
bility of such placement is not very clear, since routers may be
hard to modify and access to in-network processing boxes is
usually limited. Our work deals with the propagation of such
filters amongst firewalls at the edges of the Internet, and ad-
vances in filter representation can be used in our framework.

Finally, there have been two recent proposals for coopera-
tive detection and containment in an untrusted environment.
This problem has also been recognized by Sandin [50], who
also posed the problem of designing a peer-to-peer based sys-
tem for this purpose. Nojiri et al [15] propose the use of a
“friend” network: each firewall has a trust relationship with a
set of other firewalls, and trusts worm alerts from its friends.
Each firewall makes its own decision about whether a worm
attack is in progress by a formula combining the number of
friends alerting it and its own observations. This is then used
to set up appropriate filters. Senthilkumar et al [51] extend
this work to construct hierarchical architectures where a par-
ent firewall is alerted by its children, and sends such alerts to
its parent. Security against malicious participants is enforced
in [15, 51] by assuming the existence of a friend network or a
trust relationship between parents and children. In contrast,
we employ verification mechanisms that allow a firewall’s
alert to be verified. This allows a single firewall to potentially

13

get alerted by any other firewall in a secure fashion (not just
its set of friends or its parent). Anagnostakis et al [14, 52]
propose a signaling protocol among participating firewalls
to detect and contain a worm. This work attempts to moni-
tor multiple worms at the same time, and is not suitable for
very fast worms (as observed by the authors themselves). Our
scheme generalizes on these two schemes in two ways. First,
they employ only explicit signaling to propagate information.
Determining the rate at which explicit signals should be prop-
agated depends on the worm itself. Implicit signaling, as we
will show later, does not suffer from this limitation. Secondly,
the degree of resilience of these schemes against malicious
participants has not been fully characterized. They mostly
consider only inaccurate information from participants. We
qualitatively analyze our scheme for its resilience and its con-
tainment as well.

8 Conclusion

In this paper, we have studied cooperative schemes among
mutually untrusted firewalls in order to detect and contain
unknown fast scanning worms. We identify three important
components of our architecture: local detection, propagation,
and filtering. We discuss two types of propagation: implicit
signaling and explicit signaling. Under this framework, we
derive analytical results for the effectiveness of each of these
mechanisms. Detection and filtering are easy to implement
and are effective under certain regimes in the complete de-
ployment scenario, but would fail against some recent worms
that have faster scanning rate and higher vulnerable popula-
tions. When implicit signaling is also used, the effectiveness
improves, and it can offer containment of over97% against
most scanning worms. Implicit signaling has two main ad-
vantages: no additional overhead is required for signaling
and its performance is independent of the scanning rate of
the worm. Explicit signaling can be used to augment implicit
signaling, and improves the containment metric over99%.
Explicit signaling is more resilient to smart worms and ma-
licious firewalls that attempt to subvert our scheme. We also
designed a rerouting scheme to deal with partial deployment:
with 1% deployment, we show that our schemes can still pro-
vide containment (among deployed firewalls) of over97%.
We also extend our rerouting mechanism to handle malicious
firewalls: this can handle a few malicious firewalls (of the or-
der of a few hundred) in our cooperative.

Our analysis of these schemes is necessarily simplistic,
and only offers analytical support for the performance of our
schemes. While this is useful for deriving bounds on the ef-
fectiveness of cooperation, it does not address several va-
garies of the Internet, such as firewalls protecting networks
of various sizes, non-uniform vulnerable host distribution,
mobile laptops that can spread infection covertly between
networks, and worm-induced network congestion. As part
of future work, we are interested in analyzing the effective-
ness of our schemes under more realistic scenarios. We are
currently in the process of implementing a prototype which
would also include several overhead optimizations. For ex-
ample, a firewall could implement a hybrid signaling proto-
col by using explicit signaling only when there are no out-

going packets to piggyback its implicit signals. The over-
head of explicit signaling can be reduced by some form of
secure application-level multicast. Other possible areas of fu-
ture work include the design of local detection schemes to
deal with other classes of worms and to incorporate them in
our framework.

References
[1] David Moore, Vern Paxson, Stefan Savage, Colleen Shannon,

Stuart Staniford, and Nicholas Weaver, “Inside the Slammer
Worm,” IEEE Security and Privacy, vol. 1, no. 4, pp. 33–39,
2003.

[2] Colleen Shannon and David Moore, “The spread of the
witty worm,” Mar 2004, http://www.caida.org/
analysis/security/witty/ .

[3] David Moore, Colleen Shannon, and Jeffery Brown, “Code-
red: a case study on the spread and victims of an internet
worm,” in Proceedings of the Internet Measurement Workshop
(IMW), 2002.

[4] Cliff Changchun Zou, Weibo Gong, and Don Towsley, “Code
red worm propagation modeling and analysis,” inProceedings
of the 9th ACM conference on Computer and communications
security, 2002, pp. 138–147.

[5] Jose Nazario, “The Blaster worm: The view from 10,000 feet,”
http://monkey.org/˜jose/presentations/
blaster.d/ .

[6] CAIDA, “ Dynamic Graphs of the Nimda worm,”
http://www.caida.org/dynamic/analysis/
security/nimda/ .

[7] Stuart Staniford, Vern Paxson, and Nicholas Weaver, “How to
Own the Internet in Your Spare Time,” inProceedings of the
11th USENIX Security Symposium, 2002, pp. 149–167.

[8] Nicholas Weaver, Vern Paxson, Stuart Staniford, and Robert
Cunningham, “A Taxonomy of Computer Worms,” inProc. of
the ACM workshop on Rapid Malcode, 2003, pp. 11–18.

[9] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Ste-
fan Savage, “Internet quarantine: Requirements for containing
self-propagating code,” inIEEE INFOCOM, 2003.

[10] Nicholas Weaver, Dan Ellis, Stuart Staniford, and Vern Paxson,
“Worms vs Perimeters: The Case for HardLANs,” inProc. Hot
Interconnects, Aug 2004.

[11] Vinod Yegneswaran, Paul Barford, and Somesh Jha, “Global
Intrusion Detection in the Domino Overlay System,” inPro-
ceedings of Network and Distributed System Security Sympo-
sium (NDSS), Feb 2004.

[12] Nicholas Weaver, Vern Paxson, and Stuart Staniford, “Worm-
holes and a Honeyfarm: Automatically Detecting Novel
Worms,” inDIMACS Large Scale Attacks Workshop presenta-
tion, Piscataway, NJ, Sep 2003,http://www.icir.org/
vern/dimacs-large-attacks/weaver.ppt .

[13] Nicholas Weaver, Stuart Staniford, and Vern Paxson, “Very
Fast Containment of Scanning Worms,” inProceedings of the
13th USENIX Security Symposium, 2004, pp. 29–44.

[14] K. G. Anagnostakis, M. B. Greenwald, S. Ioannidis, A. D.
Keromytis, and D. Li, “A Cooperative Immunization System
for an Untrusting Internet,” inProceedings of the 11th IEEE
International Conference on Networks (ICON’03), Oct 2003.

14

[15] D. Nojiri, J. Rowe, and K. Levitt, “Cooperative Response
Strategies for Large Scale Attack Mitigation,” inProceedings
of The Third DARPA Information Survivability Conference and
Exposition (DISCEX III), Washington, DC, April 2003.

[16] H. A. Kim and B. Karp, “Autograph: Toward automated, dis-
tributed worm signature detection,” inProceedings of the 13th
Usenix Security Symposium, August 2004.

[17] “Route Views ,”http://www.routeviews.org/ .

[18] Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger,
“Very Fast Containment of Scanning Worms,” inThe Seventh
International Symposium on Recent Advances in Intrusion De-
tection (RAID), Sep 2004.

[19] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Bal-
akrishnan, “Fast portscan detection using sequential hypothe-
sis testing,” inProc. of the IEEE Symposium on Security and
Privacy, May 2004.

[20] Sumeet Singh, Cristian Estan, George Varghese, and Stefan
Savage, “Automatic Worm Fingerprinting,” inProceedings
of OSDI, San Francisco, USA, December 2004.

[21] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, “Pre-
liminary results using scaledown to explore worm dynamics,”
in Proceedings of ACM CCS WORM, Washington, D.C., Oct
2004.

[22] Sheldon M. Ross,Introduction to Probability Models, 8th Edi-
tion, Academic Press, 2003.

[23] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana,
“Internet indirection infrastructure,” inProc. ACM SIGCOMM
Conference (SIGCOMM ’02), August 2002, pp. 73–78.

[24] Oleg Kolesnikov, Dave Dagon, and Wenke Lee, “Advanced
Polymorphic Worms: Evading IDS by Blending in with Nor-
mal Traffic,” 2004, http://www.cc.gatech.edu/
˜ok/w/ok_pw.pdf .

[25] M. Roesch, “Snort: Lightweight intrusion detection for net-
works,” in Proceedings of the 13th Systems Administration
Conference, 1999.

[26] Vern Paxson, “Bro: a system for detecting network intruders
in real-time,” Computer Networks (Amsterdam, Netherlands:
1999), vol. 31, no. 23–24, pp. 2435–2463, 1999.

[27] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole,
Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian
Zhang, and Heather Hinton, “StackGuard: Automatic adap-
tive detection and prevention of buffer-overflow attacks,” in
Proc. 7th USENIX Security Conference, San Antonio, Texas,
Jan 1998, pp. 63–78.

[28] Christina Warrender, Stephanie Forrest, and Barak A. Pearl-
mutter, “Detecting intrusions using system calls: Alternative
data models,” inIEEE Symposium on Security and Privacy,
1999, pp. 133–145.

[29] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Row-
stron, Colleen Shannon, and Jeffery Brown, “Can we contain
Internet worms?,” inThird Workshop on Hot Topics in Net-
works, San Diego, USA, Nov 2004.

[30] J. Twycross and M. M. Williamson, “Implementing and testing
a virus throttle,” inProceedings of the 12th USENIX Security
Symposium, Aug 2003, pp. 285–294.

[31] Stuart Staniford, James A. Hoagland, and Joseph M. McAler-
ney, “Practical automated detection of stealthy portscans,”J.
Comput. Secur., vol. 10, no. 1-2, pp. 105–136, 2002.

[32] S. Singh, C. Estan, G. Varghese, and S. Savage, “The Early-
Bird System for Real-time Detection of Unknown Worms,”
2003, Technical Report CS2003-0761, UCSD.

[33] Christian Kreibich and Jon Crowcroft, “Honeycomb: Creating
intrusion detection signatures using honeypots,”SIGCOMM
Comput. Commun. Rev., vol. 34, no. 1, pp. 51–56, 2004.

[34] Niels Provos, “A Virtual Honeypot Framework,” inProc. of
13th USENIX Security Symposium, San Diego, CA, Aug 2004,
pp. 51–56.

[35] David Moore, Colleen Shannon, Geoffrey M. Voelker, and Ste-
fan Savage, “Network telescopes,” Tech. Rep. TR-2004-04,
CAIDA, 2003.

[36] “Counterpane Internet Security,” http://www.
counterpane.com .

[37] J. Wu, S. Vangala, L. Gao, , and K. Kwiat, “An Effective Ar-
chitecture and Algorithm for Detecting Worms with Various
Scan Techniques,” inProc. of Network and Distributed System
Security Symposium, Feb 2004.

[38] Cliff Changchun Zou, Lixin Gao, Weibo Gong, and Don
Towsley, “Monitoring and early warning for internet worms,”
in Proceedings of the 10th ACM conference on Computer and
communication security, 2003, pp. 190–199.

[39] Brent N. Chun, Jason Lee, and Hakim Weatherspoon, “Net-
bait: a distributed worm detection service,” Tech. Rep. IRB-
TR-03-033, Intel Research Berkeley, Sep 2003.

[40] S. Staniford, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagland, K. Levitt, C. Wee, R. Yip, and D. Zerkle, “GrIDS
– A graph-based intrusion detection system for large net-
works,” in Proceedings of the 19th National Information Sys-
tems Security Conference, 1996.

[41] “CounterMalice, Silicon Defense ,” http:
//www.silicondefense.com/products/
countermalice/ (currently unavailable).

[42] S. Staniford, “Containment of scanning worms in enterprise
networks,”Journal of Computer Security, 2004 (to appear).

[43] K. Park, H. Kim, B. Bethala, and A. Selcuk, “Scalable Protec-
tion against DDoS and Worm Attacks,” Tech. Rep., DARPA
ATO FTN, Final Project Report, Purdue University, 2003.

[44] Cynthia Wong, Chenxi Wang, Dawn Song, Stan Bielski, and
Gregory R. Ganger, “Dynamic Quarantine of Internet Worms,”
in Proceedings of International Conference on Dependable
Systems and Networks (DSN), Florence, Italy, June 2004.

[45] Helen J. Wang, Chuanxiong Guo, Daniel R. Simon, and Alf
Zugenmaier, “Shield: vulnerability-driven network filters for
preventing known vulnerability exploits,” inProceedings of
SIGCOMM, 2004, pp. 193–204.

[46] S. Sidiroglou and A. Keromytis, “A network worm vaccine
architecture,” inProceedings of the IEEE Workshop on En-
terprise Technologies: Infrastructure for Collaborative Enter-
prises (WETICE), Workshop on Enterprise Security, Jun 2003.

[47] S. Sidiroglou and A. Keromytis, “Countering network worms
through Automatic Patch Generation,” Nov 2003, Columbia
University technical report CUCS-029-03. New York, NY.

[48] V. Berk, G. Bakos, and R. Morris, “Designing a framework
for active worm detection on global networks,” inIEEE In-
ternational Workshop on Information Assurance, Darmstadt,
Germany, Mar 2003.

15

[49] Xuan Chen and John Heidemann, “Detecting early worm prop-
agation through packet matching,” Tech. Rep. ISI-TR-2004-
585, USC/Information Sciences Institute, Feb 2004.

[50] Joel Sandin, “P2P Systems for Worm Detection,” inDI-
MACS Large Scale Attacks Workshop presentation, Piscat-
away, NJ, Sep 2003, http://www.icir.org/vern/
dimacs-large-attacks/sandin.ppt .

[51] C. G. Senthilkumar and K. Levitt, “Hierarchically Controlled
Co-operative Response Strategies for Internet Scale Attacks,”
in Proceedings of The International Conference on Depend-
able Systems and Networks, San Francisco, CA, June 2003.

[52] Kostas G. Anagnostakis, Michael B. Greenwald, and Ange-
los D. Keromytis, “Efficiently detecting and reacting to day-
zero worms on the internet,”http://citeseer.ist.
psu.edu/634900.html .

A Partial Deployment: Modeling Propagation

We now extend the model in Section 4.3 to allow for partial
deployment. We analyze our two solutions under partial de-
ployment: first, without rerouting, and second, with rerouting
enabled. Unfortunately, we could not obtain any closed-form
expressions in this scenario, and hence present a differential
equation model along with numerical results. We consider the
case when both implicit signaling and explicit signaling at the
rate ofE are used.

When there is no rerouting, the undeployed firewalls do
not participate in detection or propagation. We useN, n,m to
denote the total number of vulnerable firewalls, the number of
deployed vulnerable firewalls and the number of undeployed
vulnerable firewalls respectively (N = (m + n)). Denote by
mi(t), the number of undeployed firewalls infected by timet.
The following equations hold:

d

dt
(mi) =

phs(mi + ni − nd)(m−mi)
N

= sn(mi + ni − nd)(m−mi) (13)

d

dt
(ni) =

phs(mi + ni − nd)(n− ni − na)
N

= sn(mi + ni − nd)(n− ni − na) (14)
d

dt
(nd) =

ni − nd

td
(15)

d

dt
(na) =

hs(nd)(n− ni − na)
N

+
End(n− ni − na)

n

=
sn(nd)(n− ni − na)

p

(
1 +

E

hsα

)
(16)

Equation (13) tracks the growth of infected undeployed fire-
walls over time (allm−mi uninfected firewalls are vulnera-
ble), while Equation (14) simply replaces the termni−nd in
Equation (3) withmi + ni − nd. Note that in Equation (16),
the first term accounts for implicit signaling, while the second
term includes the explicit signaling term. Note that implicit
signals are piggybacked on scans and are sent to all firewalls,
while explicit signals are sent only to deployed firewalls.

When rerouting is enabled, we argue that the undeployed
firewalls also behave as deployed firewalls witht′d = td/α
whereα = n/N (the fraction of deployed firewalls). The

argument is that the traffic seen by the firewallA(X) is a
fraction α of the traffic sent byX, and so is the number of
failed connections. Since our local detection scheme uses a
count of connection failures,A(X) detects the infection of
X by the fraction1/α slower thanX itself would have done
if it were deployed. Thus, the above analysis can be tweaked
to accommodate this fact (we usemd(t) to denote the number
of undeployed firewalls that have been identified as infected
by their corresponding analysis firewalls at timet):

d

dt
(mi) =

phs(mi + ni − nd)(m−mi)
N

= sn(mi + ni − nd)(m−mi) (17)

d

dt
(md) =

α(mi −md)
td

(18)

d

dt
(ni) =

phs(mi −md + ni − nd)(n− ni − na)
N

= sn(mi −md + ni − nd)(n− ni − na) (19)
d

dt
(nd) =

ni − nd

td
(20)

d

dt
(na) =

hs(md + nd)(n− ni − na)
N

+
E(nd + md)(n− ni − na)

n

=
sn(md + nd)(n− ni − na)

p

(
1 +

E

hsα

)
(21)

There are two main differences from the equations for the
previous case. Equation (19) uses the term (mi−md+ni−nd)
for the number of scanning firewalls, since an undeployed
firewall that has been identified as infected by its analysis
firewall cannot send any more scans to a deployed network.
Equation (21) also accounts from implicit and explicit signals
sent from themd analysis firewalls.

16

